The Obesity Paradox in Heart Failure

Is it All About Fitness, Fat, or Sex?*

Carl J. Lavie, MD, Hector O. Ventura, MD

Substantial evidence points out that obesity impacts most of the cardiovascular (CV) disease (CVD) risk factors, including adversely effecting lipids, increasing arterial pressure, elevating glucose, and increasing the risk of metabolic syndrome and diabetes mellitus, and increasing systemic inflammation (1). Obesity also has many deleterious effects on CV structure and function and hemodynamics (Figure 1) and increases the risk of most CVD (2,3). Because overweight and obese patients develop more hypertension and coronary heart disease (CHD), 2 of the major risk factors for heart failure (HF), not surprisingly, these patients also develop HF much more commonly than do the lean counterparts.

Despite the increased prevalence of HF in obesity, many studies have demonstrated a so-called “obesity paradox” in which overweight and at least mildly obese patients with HF often have a better prognosis, during the short-term, compared with lean HF patients (2,4). A recent meta-analysis of 6 studies (n = 22,807) has shown that the highest risk of adverse events, including CV mortality, all-cause mortality, and rehospitalizations, during a mean 2.9-year follow-up, were in those with low body mass index (BMI), whereas the lowest risk occurred in the overweight BMI (Figure 2) (5). Another recent study of 6,142 patients with acutely decompensated HF from 12 prospective studies on 4 continents also demonstrated an obesity paradox, but this study found that this was mostly confined to older persons and those with reduced cardiac function, less cardiometabolic illness, and recent-onset HF (6).

In a study reported in this issue of JACC: Heart Failure, Vest et al. (7) from the Cleveland Clinic assessed their population with systolic HF (left ventricular ejection fraction [LVEF] <40%; n = 3,811) who had undergone cardiopulmonary stress testing and found that, after adjustment for confounders, the obesity paradox in this population during a mean 6.2-year follow-up was largely confined to older persons and those with reduced cardiac function, less cardiometabolic illness, and recent-onset HF (6).

Cardiorespiratory fitness (CRF) is a strong predictor of prognosis in many populations, including those with HF (9,12). Thus, the obesity paradox can be attributed to better CRF. We demonstrated in 2,066 patients with HF an obesity survival paradox only in those patients with poor CRF (peak oxygen consumption [VO₂] < 14 ml/kg/min), whereas those with a better CRF had a good prognosis regardless of weight (9). These results were subsequently confirmed in an analysis of 1,675 HF patients (13). Although the present study by Vest et al. (7) did not assess patients based on their level of CRF, they did adjust for peak VO₂ in their analyses. As we also demonstrated in patients with CHD (11), these data certainly suggest that CRF alters the relationship

*Editorials published in JACC: Heart Failure reflect the views of the authors and do not necessarily represent the views of JACC: Heart Failure or the American College of Cardiology.

From the Department of Cardiovascular Diseases, John Ochsner Heart & Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, Louisiana. Dr. Lavie is the author of the book The Obesity Paradox; and has served as a consultant and speaker for the Coca-Cola Company (on fitness and not on any of their products). Dr. Ventura has reported that he has no relationships relevant to the contents of this paper to disclose.
between adiposity and prognosis in patients with HF (12).

One of the limitations of BMI is that this does not differentiate BF from muscle mass, but the obesity paradox in HF has been demonstrated with both BMI and BF (14). More than a decade ago, in a small study of systolic HF, we demonstrated that every 1% increase in BF was associated with a 13% reduction in mortality or urgent transplantation (14). Higher BF has also been proven to be protective in cohorts of CHD (11,12). Although the potential mechanisms for a protective effective BF are numerous and beyond the scope of this discussion, 1 potential mechanism especially applicable to HF is that patients with more BF also have more muscular strength (15). Higher muscular strength is associated with better prognosis in CVD and it prevents frailty and cachexia in HF (16).

Previous studies have shown an obesity paradox in both sexes with HF and in populations that were adjusted for sex (6,8,9). However, it is quite possible
that the obesity paradox in CVD and HF may differ by sex. Women have lower peak VO\textsubscript{2} than men, but they also have higher BF. When adjusting peak VO\textsubscript{2} for LBM, the differences in CRF between sexes are markedly reduced (17). Vest et al. (7) did not measure BF and LBM, but their results were not affected despite using an estimated LBM. Nevertheless, it may be difficult to statistically adjust for components that are intimately related biologically, such as CRF, BF, and sex.

A recent large meta-analysis in CHD by Wang et al. (18) of 89 studies in more than 1.3 million patients demonstrated that the obesity paradox mostly referred to an overweight paradox or mild obesity paradox, and the protective effect of obesity is more in the short-term (<5 years) as opposed to long-term follow-up and also more severe obesity (e.g., BMI >35 kg/m2 and especially >40 kg/m2) is associated with high mortality long-term (19). These same effects may apply to HF, along with differential effects at various degrees of LVEF (e.g., older patients and women are more likely to have HF with preserved LVEF).

In conclusion, the study by Vest et al. (7) certainly adds to the literature on the obesity paradox in systolic HF and points out the importance of assessing for detailed confounders as well as differentiating the sex effects. As we titled this editorial, “The Obesity Paradox in Heart Failure: Is it All About Fitness, Fat, or Sex?,” the correct answer is “all of the above” as well as obesity severity. Efforts are needed to increase physical activity in CRF throughout the health care system (20,21), including in HF, as well as preventing obesity, especially more severe degrees of obesity (e.g., especially class II and III obesity), in the prevention and treatment of CVD and HF.

REPRINT REQUESTS AND CORRESPONDENCE: Dr. Carl J. Lavie, John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, 1514 Jefferson Highway, New Orleans, Louisiana 70121-2483. E-mail: clavie@ochsner.org.

FIGURE 2 Meta-Analysis of 6 Studies (n = 22,807) on Impact of BMI on Cardiovascular Mortality, All-Cause Mortality, and Hospitalizations in Heart Failure

![Meta-Analysis of 6 Studies](image)

BMI – body mass index. Reproduced with permission from Sharma et al. (5).

REFERENCES

KEY WORDS fitness, heart failure, obesity, sex